|
涡扇15(WS15) 牌号 涡扇15 命名 “峨眉” 涡扇发动机用途 军用涡扇发动机类型 涡轮风扇喷气发动机国家 中国 总设计师 江和甫 研制单位 中国燃气涡轮研究院 生产厂商 西安发动机公司/贵州黎阳航空发动机公司装机对象 WS-15-10用于J-10M(出口型) WS-15-13 J-13单发常规布局腹部DSI进气的隐身歼击机.涡扇15(WS15)牌号涡扇15命名“峨眉”涡扇发动机用途军用涡扇发动机类型涡轮风扇喷气发动机国家中国总设计师江和甫研制单位中国燃气涡轮研究院生产厂商西安发动机公司/贵州黎阳航空发动机公司装机对象WS - 15 - 10用于J - 10M(出口型)WS - 15 - 13 J - 13单发常规布局腹部DSI进气的隐身歼击机。 WS-15-CJ用于某在研的垂直降落/短距起飞的歼击机. WS - 15 - CJ用于某在研的垂直降落/短距起飞的歼击机。 (CJ是垂直起降歼击机的Chuizhiqijiang Jianjiji字母第一个简写) WS-15X用于双发单座的重型隐身战斗机的领先试飞. (CJ是垂直起降歼击机的Chuizhiqijiang Jianjiji字母第一个简写)WS - 15X用于双发单座的重型隐身战斗机的领先试飞。
中俄于1992年春天开始展开艰苦谈判,在经过3年的拉锯之后,因为俄罗斯的经济状况很差,用于军工科研的 经费很少很少,又因为在92年明斯克马丘丽莎会议雅克-141被终止后, P-79发动机没有了使用对象,又没有其他的战斗机使用此发动机,所以“联盟”航空发动机科研生产联合体(原图 曼斯基发动机设计局)的经济状况很差,在这种状况下,1995年6月,中俄签订了转让P-79发动机生产许可证的协定,1996年8月,俄罗斯的“联盟”航空发动机科研生产联合体(原图曼斯基发动 机设计局)向中国方面交付了P-79发动机的全套设计图纸及技术资料,特别是引进了制造P-79发动机核心机的生产设备及生产制造工艺资料.遗憾的是用于雅克-141的P-79B-300发动机矢量喷管技术却没有得到,当时是作为某垂直起降歼击机的涡扇发动机进行预研,可是这种垂直起降 歼击机同很多中国以前研制的飞机一样。(后来,1998年亚洲金融危机时俄罗斯经济也陷入多重危机,中国此 时不仅购买了用于雅克-141的P-79B-300发动机矢量喷管技术,同时也取得了莫斯科联盟航空发动机科技集团研制的推力为20吨的R179-300发动机设计方案和P-79M的设计图纸和技术资料。R179-300发动机这台发动机是为垂直起飞歼击机雅克141研制的R-79V-300发动机的进一步发展。) 在这种背景下,1996年初,江和甫协同刘大响院士负责组织“九五”国防重大背景(垂直起降歼击机的计划) 的预研项目——某新型涡扇发动机(以P-79发动机为基础进行深度开发)关键技术预研工作,测绘仿制 P-79发动机的核心机,组织完成了 P-79发动机的高压压气机、燃烧室、涡轮三大核心部件等比例的测绘仿制的工作.进行理论方法、计算方法和试验 方法的探索研究;以突破先进部件关键技术为主,重点围绕三大高压部件等比例全尺寸试验件的工程设计和试制及 试验以及其相关的强度、控制等系统进行综合应用研究,在三大核心部件的测绘仿制中,大胆倡导采用了航空动力 许多前沿设计技术成果和大量应用新材料、新工艺,从而突破了120余项关键技术。 624所在取得了莫斯科联盟航空发动机科技集团研制的推力为20吨的R179-300发动机设计方案和P-79M的设计图纸和技术资料后, 研制了YWH一30—27核心机,YWH一30—27核心机就是以P-79发动机核心机为基础进行深度开发的.CJ-2000是以YWH一中俄于1992年春天开始展开艰苦谈判,在经过3年的拉锯之后,因为俄罗斯的经济状况很差,用于军工科研的经费很少很少,又因为在92年明斯克马丘丽莎会议雅克 - 141被终止后,P - 79发动机没有了使用对象,又没有其他的战斗机使用此发动机,所以“联盟”航空发动机科研生产联合体(原图曼斯基发动机设计局)的经济状况很差,在这种状况下,1995年6月,中俄签订了转让的P - 79发动机生产许可证的协定,1996年8月,俄罗斯的“联盟”航空发动机科研生产联合体(原图曼斯基发动机设计局)向中国方面交付了P - 79发动机的全套设计图纸及技术资料,特别是引进了制造P - 79发动机核心机的生产设备及生产制造工艺资料。遗憾的是用于雅克-141的P - 79B - 300发动机矢量喷管技术却没有得到,当时是作为某垂直起降歼击机的涡扇发动机进行预研,可是这种垂直起降歼击机同很多中国以前研制的飞机一样(后来,1998年亚洲金融危机时俄罗斯经济也陷入多重危机,中国此时不仅购买了用于雅克-141的P - 79B - 300发动机矢量喷管技术,同时也取得了莫斯科联盟航空发动机科技集团研制的推力为20吨的R179 - 300发动机设计方案和P - 79M的设计图纸和技术资料。R179 - 300发动机这台发动机是为垂直起飞歼击机雅克141研制的R - 79V - 300发动机的进一步发展。)在这种背景下, 1996年年初,江和甫协同刘大响院士负责组织“九五”国防重大背景(垂直起降歼击机的计划)的预研项目 - 某新型涡扇发动机(以P - 79发动机为基础进行深度开发)关键技术预研工作,测绘仿制P - 79发动机的核心机,组织完成了P - 79发动机的高压压气机,燃烧室,涡轮三大核心部件等比例的测绘仿制的工作。进行理论方法,计算方法和试验方法的探索研究,以突破先进部件关键技术为主,重点围绕三大高压部件等比例全尺寸试验件的工程设计和试制及试验以及其相关的强度,控制等系统进行综合应用研究,在三大核心部件的测绘仿制中,大胆倡导采用了航空动力许多前沿设计技术成果和大量应用新材料,新工艺,从而突破了120余项关键技术,624所在取得了莫斯科联盟航空发动机科技集团研制的推力为20吨的R179 - 300发动机设计方案和P - 79M的设计图纸和技术资料后,研制了YWH一30-27核心机,YWH一30-27核心机就是以P - 79发动机核心机为基础进行深度开发的。CJ - 2000是以YWH一
30—27核心机为基础进一步开发的, WS-15是CJ-2000的型号研制的代号. 30-27核心机为基础进一步开发的,WS - 15是CJ - 2000的型号研制的代号。 (CJ是垂直起降歼击机的Chuizhiqijiang Jianjiji字母第一个简写,2000是项目开始研制的时间是2000年) 1999年国庆节后, 624所参照R179-300和P-79M的发动机设计方案,推出了以YWH一30—27核心机为基础的改进设计方案, 在争夺下一代战斗机歼-13的发动机时,获得胜利,,2000年初正式被选定为歼-13单发常规布局腹部DSI进气的隐身歼击机飞机的动力装置。编号为WS-15. (CJ是垂直起降歼击机的Chuizhiqijiang Jianjiji字母第一个简写,2000年是项目开始研制的时间是2000年)1999年国庆节后,624所参照R179 - 300和P - 79M的发动机设计方案,推出了以YWH一30-27核心机为基础的改进设计方案,在争夺下一代战斗机歼-13的发动机时,获得胜利,2000年初正式被选定为歼-13单发常规布局腹部DSI进气的隐身歼击机飞机的动力装置。编号为WS - 15。 命名“峨眉” 涡扇发动机.上级要求“WS-15”发动机的研制要全面贯彻新的国军标GJB241-87“航空涡轮喷气和涡轮风扇发动机通用规范和全面贯彻发动机结构完整性大纲。同时决定将WS-15的研制分为三个阶段实施:即三大高压性能部件研制与核心机研制、验证机和原型机的研制。至此W S-15正式立项研制,这是我国首次遵循“基础研究-关键技术突破-先进部件-核心机-验证机-型号研制”这一发展模式所开展的涡扇发动机研制工作,因此可以说是具有里程碑式的意义!全面研制工作于20 00年初开始.(所以中推于1997年获准开展整机验证机研制,于1999年因经费原因被迫中止。其实是为 WS-15让路而下马,而不是因为WS10发动机或因经费原因) 从日前召开的中国燃气涡轮研究院(624所)工作会上获悉,我国自行研制的推力推重比为9的涡轮风扇航空发 动机的核心机CJ2000于2005年4月14日首次点火成功后, 推重比为9的涡轮风扇航空发动机的核心机已于2005年7月上旬在台架运转试车时,各种性能完全达到了设计 指标,转速推到地面最高转速(换算转速102.2%)-----“峨眉”航空发动机的技术验证机在2006年5月首次台架运转试车成功。这标志着我国在自主研制航空发动机 的道路上又实现了历史性跨越,在研制我国第四代中型战斗机的征程上迈出了坚实的重大一步。2007年3月原 形机首次台架运转试车成功,预计,2009年6月“峨眉”发动机的原型机将完成FRET(飞行前鉴定试验阶 段),2009年6月底随J-13首飞成功.为祖国60周年献汤一份厚礼.预计2013年3月发动机完成设计定型试验.命名“峨眉”涡扇发动机。上级要求“WS - 15”发动机的研制要全面贯彻新的国军标GJB241 - 87“航空涡轮喷气和涡轮风扇发动机通用规范和全面贯彻发动机结构完整性大纲,同时决定将WS - 15的研制分为三个阶段实施:即三大高压性能部件研制与核心机研制,验证机和原型机的研制至此W S - 15正式立项研制,这是我国首次遵循“基础研究 - 关键技术突破 - 先进部件 - 核心机 - 验证机 - 型号研制“这一发展模式所开展的涡扇发动机研制工作,因此可以说是具有里程碑式的意义全面研制工作于20 00年初开始! (所以中推于1997年获准开展整机验证机研制,于1999年因经费原因被迫中止。其实是为WS - 15让路而下马,而不是因为WS10发动机或因经费原因)从日前召开的中国燃气涡轮研究院(624所)工作会上获悉,我国自行研制的推力推重比为9的涡轮风扇航空发动机的核心机CJ2000于2005年4月14日首次点火成功后,推重比为9的涡轮风扇航空发动机的核心机已于2005年7月上旬在台架运转试车时,各种性能完全达到了设计指标,转速推到地面最高转速(换算转速102.2 %)-----"峨眉“航空发动机的技术验证机在2006年5月首次台架运转试车成功,这标志着我国在自主研制航空发动机的道路上又实现了历史性跨越,在研制我国第四代中型战斗机的征程上迈出了坚实的重大一步。2007年3月原形机首次台架运转试车成功,预计,2009年6月“峨眉”发动机的原型机将完成FRET(飞行前鉴定试验阶段),2009年6月底随J - 13首飞成功,为祖国60周年献汤一份厚礼。预计2013年3月发动机完成设计定型试验。 2014年7月生产型发动机定型, 装“峨眉”航空发动机的第四代单发中型战斗机(可能编号J-13)将于2013年具备初步作战能力。 按照飞机任务要求,“峨眉”航空发动机在循环参数选择上采用较高的涡轮进口温度、中等总增压比和比较低的涵 道比。采用的新技术主要有损伤容限和高效率的宽弦叶片、三维粘性叶轮机设计方法、整体叶盘结构的风扇和压气 机、单晶气冷涡轮叶片、粉末冶金涡轮盘、刷式封严、树脂基复合材料外涵机匣、整体式加力燃烧室设计、陶瓷基 复合材料喷管调节片、三元矢量喷管和具有故障诊断和状态监控能力的双余度式全权数字式电子控制 系统。 发动机由10个单元体组成。 2014年7月生产型发动机定型,装“峨眉”航空发动机的第四代单发中型战斗机(可能编号J - 13)将于2013年具备初步作战能力。按照飞机任务要求,“峨眉”航空发动机在循环参数选择上采用较高的涡轮进口温度,中等总增压比和比较低的涵道比。采用的新技术主要有损伤容限和高效率的宽弦叶片,三维粘性叶轮机设计方法,整体叶盘结构的风扇和压气机,单晶气冷涡轮叶片,粉末冶金涡轮盘,刷式封严,树脂基复合材料外涵机匣,整体式加力燃烧室设计,陶瓷基复合材料喷管调节片,三元矢量喷管和具有故障诊断和状态监控能力的双余度式全权数字式电子控制系统,发动机由10个单元体组成。
“峨眉”涡扇发动机结构和系统进 气 口 环形,进气机匣为全钛结构。带18个可变弯度的进口导流叶片,其前部为径向支板,后部为可调部 分, 前缘则以来自高压压气机的空气防冰. “峨眉”涡扇发动机结构和系统进气口环形,进气机匣为全钛结构。带18个可变弯度的进口导流叶片,其前部为径向支板,后部为可调部分,前缘则以来自高压压气机的空气防冰。 风扇 3级轴流式。宽弦实心钛合金风扇叶片。第1级风扇叶片采用宽弦设计,风扇叶片可拆换,带有中间凸台。第2和 第3级风扇为用线性摩擦焊技术焊接成的整体叶盘结构。风扇机匣是整环结构,风扇转子作成可拆卸的,即第2级 盘前、后均带鼓环,分别与第1、3级盘连接。增压比约为4.01。3级静子和转子均为三维流设 计.风扇3级轴流式。宽弦实心钛合金风扇叶片。第1级风扇叶片采用宽弦设计,风扇叶片可拆换,带有中间凸台,第2和第3级风扇为用线性摩擦焊技术焊接成的整体叶盘结构,风扇机匣是整环结构,风扇转子作成可拆卸的,即第2级盘前,后均带鼓环,分别与第1,3级盘连接。增压比约为4.01 3级静子和转子均为三维流设计。 高压压气机 6级轴流式。增压比7.16。前3级转子为整体叶盘结构,是在锻坯上用电化学加工出来的。后3级转子叶片通 过燕尾形榫头与盘连接。前3级静子叶片材料为钛合金。转子为电子束焊和螺栓连接的混合结构,采用三维流技术 设计。静子部分,进口导流叶片和第1、2级静子叶片为可调,前3级盘用高温钛合金制成,第2级盘前、后均带 鼓环,分别与第1、3级盘连接。第4~ 6级盘由镍基高温合金粉末冶金制成,用电子束焊焊为一体,用长螺栓前与第3级盘连在一起.高压压气机6级轴流式。增压比7.16,前3级转子为整体叶盘结构,是在锻坯上用电化学加工出来的。后3级转子叶片通过燕尾形榫头与盘连接。前3级静子叶片材料为钛合金。转子为电子束焊和螺栓连接的混合结构,采用三维流技术设计。静子部分,进口导流叶片和第1,2级静子叶片为可调,前3级盘用高温钛合金制成,第2级盘前,后均带鼓环,分别与第1,3级盘连接。第4〜6级盘由镍基高温合金粉末冶金制成,用电子束焊焊为一体,用长螺栓前与第3级盘连在一起。 钛合金整体中介机匣和对开的压气机机匣, 设有孔探仪窥孔,用以观察转子和其他部件。钛合金整体中介机匣和对开的压气机机匣,设有孔探仪窥孔,用以观察转子和其他部件。
燃烧 室 短环式。火焰筒采用激光打孔的多孔结构进行冷却.燃烧室短环式。火焰筒采用激光打孔的多孔结构进行冷却。 火焰筒为整体双层浮壁式结构,外层为整体环形壳体,采用双通路喷嘴,燃油经22个双锥喷嘴和22个小涡流杯 喷出并雾化,实现无烟燃烧,具有均匀的出口温度场。高压涡轮 单级轴流式。采用国内第二代单晶涡轮叶片材料、隔热涂层和先进冷却结构。单级轴流式,不带冠。采用气膜冷却 加冲击冷却方式。转子叶片和导向器叶片材料均为国内第二代单晶材料,叶身上有物理气相沉积的隔热涂层。机匣 内衬扇形段通过冷却空气进行叶尖间隙控制。转子叶片和导向器可单独更换。涡轮部件采用单元体结构设计,由涡 轮转子、导向器、涡轮机匣、涡轮后机匣和轴承机匣等五个组件组成。低压涡轮 单级轴流式。与高压转子对转。空心气冷转子叶片,带冠。转子叶片均可单独更换,导向器叶片可分段更换。仍然 采用了低压涡轮导向器。低压涡轮轮盘中心开有大孔,以便安装高压转子的后轴承(中介轴承).火焰筒为整体双层浮壁式结构,外层为整体环形壳体,采用双通路喷嘴,燃油经22个双锥喷嘴和22个小涡流杯喷出并雾化,实现无烟燃烧,具有均匀的出口温度场。高压涡轮单级轴流式。采用国内第二代单晶涡轮叶片材料,隔热涂层和先进冷却结构。单级轴流式,不带冠。采用气膜冷却加冲击冷却方式。转子叶片和导向器叶片材料均为国内第二代单晶材料,叶身上有物理气相沉积的隔热涂层。机匣内衬扇形段通过冷却空气进行叶尖间隙控制。转子叶片和导向器可单独更换。涡轮部件采用单元体结构设计,由涡轮转子,导向器,涡轮机匣,涡轮后机匣和轴承机匣等五个组件组成。低压涡轮单级轴流式。与高压转子对转。空心气冷转子叶片,带冠。转子叶片均可单独更换,导向器叶片可分段更换。仍然采用了低压涡轮导向器,低压涡轮轮盘中心开有大孔,以便安装高压转子的后轴承(中介轴承)。 加力燃烧室 整体式。采用径向火焰稳定器。火焰稳定器由1圈“V”形中心火焰稳定器与36根径向稳定器组成。径向稳定器 用风扇空气冷却.加力燃烧室整体式,采用径向火焰稳定器。火焰稳定器由1圈的“V”形中心火焰稳定器与36根径向稳定器组成。径向稳定器用风扇空气冷却。 加力筒体采用阻燃钛合金以减轻重量,筒体内作有隔热套筒,两者间的缝隙中流过外涵空气对筒体进行冷却,中心 环形火焰稳定器沿圆周做成12段,可以自由膨胀,整套火焰稳定器可以在发动机装在飞机上的条件 下进行更换, 尾 喷 管 全程可调收敛-扩张式,采用三元矢量喷管,在俯仰方向可作±25°偏转。从+25°到-25°的行程中只需1.5秒钟。用于调整飞机俯仰飞行姿态。装有先进的陶瓷基复合材料的尾喷管调节片 .加力筒体采用阻燃钛合金以减轻重量,筒体内作有隔热套筒,两者间的缝隙中流过外涵空气对筒体进行冷却,中心环形火焰稳定器沿圆周做成12段,可以自由膨胀,整套火焰稳定器可以在发动机装在飞机上的条件下进行更换,尾喷管全程可调收敛 - 扩张式,采用三元矢量喷管,在俯仰方向可作± 25 °偏转从+25 °到-25 °的行程中只需1.5秒钟,用于调整飞机俯仰飞行姿态。装有先进的陶瓷基复合材料的尾喷管调节片。 控制系统 推力和矢量由双余度全权限数字电子控制系统控制(FADEC),按风扇转速和核心机压比调节发动机工作,有 故障隔离功能。【技术数据】最大加力推力(daN) 16186.5 中间推力(daN) 10522 加力耗油率(kg/daN/h) 2.02 中间耗油率(kg/daN/h) 0.665 推重比 8.86 空气流量(kg/s) 138 涵道比 0.382 总增压比 28.71 涡轮进口温度(℃) 1477 最大直径(mm) 1.02 长度(mm) 5.05 质量(kg) 1862.3控制系统推力和矢量由双余度全权限数字电子控制系统控制(FADEC),按风扇转速和核心机压比调节发动机工作,有故障隔离功能。【技术数据】最大加力推力(DAN)16186.5中间推力(DAN)10522加力耗油率(公斤/张丹/小时)2.02中间耗油率(公斤/张丹/小时)0.665推重比8.86空气流量(公斤/秒)138涵道比0.382总增压比28.71涡轮进口温度(℃)1477最大直径(毫米)1.02长度(毫米)5.05质量(公斤)1862.3 |
|