|
下面回到首篇的提问上来。<br><br>为了理解“卷积”的物理意义,不妨将那个问题“相当于它的时域的信号与系统的单位脉冲响应的卷积”略作变化。这个变化纯粹是为了方便表达和理解,不影响任何其它方面。将这个问题表述成这样一个问题:一个信号通过一个系统,系统的响应是频率响应或波谱响应,且看如何理解卷积的物理意义。<br><br>假设信号函数为f, 响应函数为g。f不仅是时间的函数(信号时有时无),还是频率的函数(就算在某一固定时刻,还有的地方大有的地方小);g也是时间的函数(有时候有反应,有时候没反应),同时也是频率的函数(不同的波长其响应程度不一样)。那我们要看某一时刻 t 的响应信号,该怎么办呢?<br><br>这就需要卷积了。<br><br>要看某一时刻 t 的响应信号,自然是看下面两点:<br><br>1。你信号来的时候正赶上人家“系统”的响应时间段吗?<br>2。就算赶上系统响应时间段,响应有多少?<br><br><br>响应不响应主要是看 f 和 g 两个函数有没有交叠;响应强度的大小不仅取决于所给的信号的强弱,还取决于在某频率处对单位强度响应率。响应强度是信号强弱和对单位强度信号响应率的乘积。“交叠”体现在f(t1)和g(t-t1)上,g之所以是“(t-t1)”就是看两个函数错开多少。<br><br>由于 f 和 g 两个函数都有一定的带宽分布(假若不用开头提到的“表述变化”就是都有一定的时间带宽分布),这个信号响应是在一定“范围”内广泛响应的。算总的响应信号,当然要把所有可能的响应加起来,实际上就是对所有可能t1积分了。积分范围虽然一般在负无穷到正无穷之间;但在没有信号或者没有响应的地方,积也是白积,结果是0,所以往往积分范围可以缩减。<br><br>这就是卷积及其物理意义啊。并成一句话来说,就是看一个时有时无(当然作为特例也可以永恒存在)的信号,跟一个响应函数在某一时刻有多大交叠。<br><br> |
|