莱布尼茨 微积分 1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列 0,1,4,9 16,… 的性质,例如它的第一阶差为 1,3,5,7,…, 第二阶差则恒等于 2,2,2,… 等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列. 1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,…)倒数的级数之和 莱布尼茨圆满地解决了这一问题,他是这样计算的: 初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献. 对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristic triangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ 则是“P和 Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值. 利用这个特征三角形,他很快就意识到两个问题: (1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx. (2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和. 有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”. 根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将图1中特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differential triangle)如图2,其中 ds2=dx2+dy2. 利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式 这一公式是从几何图形中推导出来的,经常被他用来求面积. 1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式 同时,他还给出了曲线长度公式 在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum 和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式 1676年11月,他得出了公式 其中n是整数或分数(n≠-1). 莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.
6 ?2 J# q U) u9 u/ s 由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系. 莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式) (A为曲线f下的图形的面积,图3.) 于1693年给出了这个定理的证明.以前,微分和积分作为两种数学运算、两类数学问题,是分别地加以研究的.卡瓦列里、巴罗、沃利斯等许多人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果是孤立、不连贯的.虽然他们已开始考虑微分和积分之间的关系,然而只有莱布尼茨和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者的内在的直接联系:微分和积分是互逆的两种运算.而这正是建立微积分学的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则. 莱布尼茨于1684年10月发表在《教师学报》(Acta erudito-rum)上的论文,题目是“一种求极大值与极小值和求切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算”(Nova Methodus pro Maximis et Minimis,itemque tangentibus,quae necfractas,necirrationales quantitates moratur,et singularepro illis Calculi genus),在数学史上被公认为是最早发表的微积分文献. 早在1677年7月11日前后及11月左右,莱布尼茨明确定义了dy为函数微分,给出了dy的演算规则: “如果a是给定的常数,则da=0,dax=adx; 加法和减法 v=z—y+w+x,dv=dz-dy+dw+dx; 乘法 y=vx,dy=vdx+xdv 在1676—1677年的手稿中,他利用特征三角形分析了曲线切线的变化情况:对于曲线v=v(x),当dv与dx之比为无穷大时,切线垂直于坐标轴(x轴).当dv与dx之比等于0时,切线平行于x轴,当dv=dx≠0时,则切线与坐标轴成45°角,他指出,对于曲线v,当dv=0时,“在这个位置的v,明显地就是极大值(或极小值)”,他详细讨论了当dv<0,而变成dv=0后又dv<0时取极大值,反之则取极小值的情形.他还给出了拐点——曲线的凹凸情况发生变法的条件是d2v=0. 以后,莱布尼茨具体求出了各种各样复杂函数的微商(导数).1686年,给出了对数函数,指数函数的微商.1695年求出了y=xx的微商dy=xx(1+lnx),等等. 他引入了n阶微分的符号dn,并且给出了高阶微分的“莱布尼茨法则”: 其中 n!=1×2×3×…×(n-1)×n. 莱布尼茨在积分方面的成就,后来比较集中地写在1686年5月发表在《教师学报》上的一篇论文中,题为“潜在的几何与不可分量和无限的分析”(De Geometria recondita et Analysi Indivisi-bilium atque Infinitorum). 品中出现了积分符号.同年,他引入了空间曲线的“密切”(osculating)这一术语,并给出了曲率ρ公式: 其中R为曲率半径. 1692年和1694年,他给出了求一族曲线 f(x,y,α)=0(α为曲线族参数)包络的普遍方法:在 中消去α.实际上,用微积分方法研究几何在微积分奠基者(牛顿、莱布尼茨等)那里已经开始了.切线、包络等几何问题在莱布尼茨手中是与微积分连在一起的. 无穷级数 在微积分的早期研究中,有些函数如指数函数等超越函数的处理相当困难,然而人们发现,若用它们的级数来处理,则非常有成效.因此,无穷级数从一开始就是莱布尼茨、牛顿等人微积分工作的一个重要部分.有时使用无穷级数是为了计算一些特殊的量,如莱布尼茨曾用无穷级数表达式计算π(圆周率). 在求面积的过程中,通过无穷级数表示圆在第一象限的面积,他得到了π的一个十分漂亮的表达式(图4):
* {1 a% s, N5 m) r# [6 P- p9 f + q6 w! e" C4 c' y7 X
1673年左右,他独立地得到了sinx,cosx和arctgx等函数的无穷级数展开式.还得到了圆面积和双曲线面积的具体展开式,并且将这些展开式与反正切、余割、正弦函数、自然对数函数、指数函数联系起来了.他经常利用级数展开式研究超越函数.有时还将多项式定理用于分式函数或超越函数的展开式. & \8 ^8 y- u2 m6 S% Y. _6 _
无穷级数展开式,得到了如下的式子: ( C( k2 m( E `/ I' f# F7 R
& n+ i# u3 X+ c) U; M& h/ M. o
; ^( B! y- v- v0 v* `1 A误的.直到1734—1735年,L.欧拉(Euler)才得到 在1713年10月25日写给约翰·伯努利(John Bernoulli)的信中,莱布 O7 A) h. V8 u9 J* u9 J1 d g
“莱布尼茨判别法”,但他当时的证明却错了.在考虑级数还相当混乱. 微分方程 微分方程在微积分创立之初就为人们所关注.1693年,莱布尼茨称微分方程为特征三角形的边(dx,dy)的函数.在微分方程方面,他进行了一系列工作.其中有些工作是十分独特的. 1691年,他提出了常微分方程的分离变量法,解决了形如 型方程的求解问题.方法是,先写成 然后两边积分. 这一年,他还提出了求解一次齐次方程 的方法: 因此经过这种变换,原来的一次齐次方程就变成了 1694年,他证明了把一阶线性常微分方程y′+P(x)y=Q(x)化成积分方程的正确方法,他的方法使用了因变量替换.同时,他还给出了(y′)2+p(x)y′+q(x)=0的解法.1694年,他和约翰·伯努利引进了找等交曲线或曲线族的问题,并求出了一些特殊问题的解. 1696年,他证明了,利用变量替换z=y1-n,可以将伯努利方程
& z L# D4 a0 k7 C变换x=P11u+P12v,y=P21u+P22v可以将微分方程 a00+a10x+(a01+a11x)y′=0 进行简化. 通过求解微分方程,莱布尼茨解决了许多具体问题.例如,1686年,他解决了这样的问题:求一条曲线,使得一个摆沿着它作一次完全振动,都用相等的时间,而无论摆所经历的弧长怎样(即等时问题).他指出, 6 b! Z8 y6 @; |9 c' O
证明,并认识到了圆函数、三角函数的超越性,弄清了许多超越函数的基本性质.此外,他还考虑过概率方程.这一时期,他还求出了十分重要的曳物线方程: 1691年,他给出了自达·芬奇(L.Da Vinci)时代就考虑过的悬链线(catenary,这个名称是莱布尼茨给出的)方程为 1696年,约翰·伯努利提出了著名的最速降线问题: 求从一给定点到不是在它垂直下方的另一点的一条曲线,使得一质点沿这条曲线从给定点P1下滑所用的时间最短(图5);其中摩擦和空气阻力都忽略. 这是约翰·伯努利向全欧洲数学家发出的挑战.1697年,莱布尼茨和I.牛顿(Newton)、G.F.A.洛比达(L’Hospital)、约翰·伯努利分别解决了最速降线问题,指出这是由方程 表示的上凹的旋轮线,并由此开始了变分法的研究. 数学符号、代数 莱布尼茨在微积分方面的贡献突出地表现在他发明了一套适用的符号系统.1675年引入dx表示x的微分,“∫”表示积分,ddv,dddy表示二阶、三阶微分.1695年左右用dmn表示m阶微分.他比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一.他自觉地和格外慎重地引入每一个数学符号,常常对各种符号进行长期的比较研究,然后再选择他认为最好的、富有启示性的符号.他创设的符号还有 此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了“函数”(function)、“常量”(constant quantity)、变量”(variate)、“参变量”(para-meter)等术语. 在代数学方面,莱布尼茨不仅强调引入符号的重要性,而且还讨论了负数、复数的性质,认为复数的出现是无害的,断言复数的对数是不存在的,为此曾在当时的数学界掀起了一场关于负数、虚数的对数之争论.在研究复数时,他还得出过这样的结论:共轭复数的和是实数
$ O1 _" ^; U1 n6 q+ V4 @3 h: g 用一般的复数表示.他把虚数看作是存在(being)与非存在(not-being)的中介. 在1678年以前,莱布尼茨就开始了对线性方程组、行列式的研究,对消元法从理论上进行了探讨.在1693年4月28日致洛比达的信中他提出了行列式概念:“我引进方程: 此处,在两个数码中,前者表示此数所属的方程式,后者代表此数所属的字母(未知数).”这样,他创设了采用两个数码的系数记号,相当于现在的aik,为矩阵和行列式一般理论的发展提供了方便的工具. 二进位制 莱布尼茨发明二进位制的时间,大约是在1672—1676年的巴黎时期.1679年3月15日,莱布尼茨写了题为“二进位算术”(De I’arthmetique binaire)的论文.文中对二进位制进行了相当充分的讨论,与十进位制进行了比较: 给出了将二进位数改写成十进位制数的法则: 1011000(二进位制)写成十进位制数就是 26+0+24+23+0+0+0 =64+16+8 =88. 下面就是1679年3月15日手稿的一页(见183页). 莱布尼茨不仅完整地解决了二进位制的表示问题,而且给出了正确的二进位制加法与乘法规则.例如,他给出以下这类实例:
( l2 Q& h0 _# p
1695年5月莱布尼茨与鲁道夫·奥古斯特(Rudolphus Au-gustus)大公的一次谈话中,大公对他的二进位制非常感兴趣,认为一切数都可由0与1创造出来这一点,为基督教《圣经》所讲的创世记提供了依据.这是因为唯一完美的上帝是从无到有创造了世界,这与一切数的根源来自0与1的这种体系是对应的.莱布尼茨由此激起热情,试图以大公的这一想法来争取人们对他的二进位制的关注.1697年他在致大公的信函中,就将他创造设计的象征二进位制的纪念章图章当作新年礼品奉献给大公.纪念章正面是大公图象,背面的设计是这样的(见图7):水面上笼罩着一片黑暗,顶部光芒四射——象征创世的故事;中间排列着二进位、十进位制数字对照表,两侧是加法与乘法的实例. 莱布尼茨希望能用二进位制证明圆周率π的超越性. 1701年,莱布尼茨将自己的二进制数表给了法国在中国的传教士白晋(F.J.Bouvet),同时又将自己关于二进制的论文送交巴黎科学院,但要求暂不发表.同年11月白晋把宋代邵雍(1011—1077)的伏羲六十四卦次序和伏羲六十四方位两个图给了莱布尼茨.莱布尼茨对白晋提供的材料欣慰异常,发现中国古老的易图可以解释成0—63的二进制数表.莱布尼茨因为从二进制数学理解了六十四卦图(邵雍的六十四卦方圆图,图8)而高兴地说:“几千年来不能很好被理解的奥秘由我理解了,应该让我加入中国籍吧!”1703年,他将修改补充的论文“关于仅用0与1两个记号的二进制算术的说明,并附其应用以及据此解释古代中国伏羲图的探讨”(Explication de l’arthmetique binaire,quise sent des seuls caracteres 0 et 1,avec des remarques Surson utilite,et Sur ce quelle donne Le Sens des aneiennes fi-gures Chinoises Fohy,1703)再送巴黎科学院,要求公开发表.自此二进制公之于众了. 根据上述历史事实,表明莱布尼茨并不是受易图的启发而发明二进制的,而是他发现了易图结构可以用二进制数学予以解释.应该说,莱布尼茨的二进制数学能被用来理解古老的中国文化.自他发现了二者之间的这种关系后,在世界范围内兴起了对易学的数理研究,使人们对易学的兴趣日增. 莱布尼茨所进行的计算机设计,程序自动化、程序设计的思想,再加上二进制,为计算机的现代发展奠定了坚实的基础. 尽管莱布尼茨本人为计算机的设计、二进制的发明感到自豪,但他却没有将二进制用于计算机,没有使二者结合起来.在当时条件下,一个二进位制的机器只会增加技术上的困难,只有随着电子技术的发展,人们才能将二者有效地结合起来.那种认为他是为计算机而引进二进位制的说法是违背历史事实的.
逻辑学 莱布尼茨的逻辑学研究包括两个方面:数理逻辑与形式逻辑. 数理逻辑 莱布尼茨决心构造一门基本学科,这门学科在某些方面象数学,但也包括传统逻辑中一些尚未发展的研究内容.他注意到了传统逻辑与数学的共性,发现逻辑及其词项、命题和三段论与代数中的字母、方程式和变换,具有某种形式上的相似,因此他决心把逻辑表示成一种演算,这种演算研究非数量的抽象关系或形式关系,他曾称之为普遍数学.他希望建立一种哲学语言(lingua philosophica)或普遍语言(characteristica universalis),这种语言不仅有助于思想交流,而且有利于思想本身.莱布尼茨力图发明一种对概念进行演算的理论,使得概念也能象数一样进行代数演算. 1679年,莱布尼茨开始进行了这方面的研究.他的思想是:每一个简单的词项用一个素数表示,每一个合成词项用素数乘积来表示.如用3表示“能思维的”,7表示动物,人是能思维的动物则可用21表示,写成21=3.7.一个全称肯定命题,如果主项的数能被谓项的数整除,则该命题为真. 1686年,莱布尼茨发展了关于概念相等和概念包含的理论,其中引入了词项a,b,c,…,运算符号—(non,表示“非”).四个关系: _4 _$ ~8 W- h+ `5 [( u5 k- ^1 L" B
利用这种演算,他成功地将亚里士多德的四种类型的一般命题,表示成了符号公式形式,从而使得用符号表示逻辑命题成为可能.他所考虑的方案和表达方式是: 莱布尼茨认为,有可能构造一种符号系统,这种系统可以作内涵的解释也可以作外延的解释.1690年他已经引入了概念的加、减法,用以表示逻辑概念演算及逆运算.他用
1 \7 T G$ o: z# R表示逆运算,例如A—B=C,当且仅当A=B+C,且B和C没有共同的东西. 意义.以此为基础,他建立了一套全新的理论体系.他的体系要点主要是公式及一套关于词项、命题的定义与演算规则,如A=B的定义:词项是同一的或一致的,就是说它们能在任何地方,以一个代之以另外一个而不改变任何命题的真值.A=B表示A和B是同一的. 这种体系在逻辑上是从未有过的,直到约一个世纪以后才由G.布尔(Boole)重新给出.可惜的是,莱布尼茨没有发展和写出系统的著作,只留下了大批手稿,其中还有许多是断简残篇,但D.希尔伯特(Hilbert)依然说:“数理逻辑的思想首先是莱布尼茨明显说出的.”而这种数理逻辑还仅仅只是莱布尼茨符号语言的一部分. 莱布尼茨符号语言的理想是,使一切推理过程、思维过程、争论过程都像数学一样能够计算,甚至能够交给机器完成.为此,他做了很多工作. 形式逻辑 莱布尼茨在形式逻辑方面的主要工作是,关于判断的分析理论,在此基础上的复合概念理论和关于偶然命题的理论,以及“充足理由律”的提出. 他不相信一切论证都可以纳入三段论式,因为他了解到条件论证和析取论证不能还原为三段论形式.对于形式证明,他承认经院哲学争论中使用三段论可能堕落为蠢笨迂腐的学究,但他认为不能没有形式化,否则就会丧失严格性.但对亚里士多德的推崇妨碍了他在这方面取得更大的成就. 区分和研究两类真理:理性的真理(必然性命题)与事实的真理(偶然性命题)是莱布尼茨整个科学思想体系特别是他的哲学认识论的核心内容.从逻辑方面他又把必然真理分成原始的真理和推理的真理,并且指出:“推理的真理是必然的,它们的反面是不可能的,事实的真理是偶然的,它们的反面是可能的.”他又认为推理是建立在两大原则上的:(1)矛盾原则,凭着这个原则,我们判定包含矛盾者为假,与假的相对立和相矛盾者为真;(2)充足理由原则,凭着这个原则,任何一件事如果是真实的或实在的,任何一个陈述如果是真的,就必须有一个为什么这样而不那样的充足理由,也许这些理由常常不知道.因此他在逻辑学中引入了“充足理由律”,使之成为与传统的同一律、矛盾律、排中律相并列的一条基本思维定律. 物理学、力学、光学 1671年,莱布尼茨写下了《物理学新假说》(Hypothesisphysica noua),其中包括两个部分:具体运动原理(Theoriamotus Concreti),是奉献给伦敦英国皇家学会的;抽象运动原理(Theoria motus Abstracti),是奉献给巴黎科学院的.他的具体原理是试图从较简单现象的角度来解释最重要的复杂现象的一种假说,这种原理建立在以太的相对循环的基础上,以太则是通过围绕地球的最初组成状态的物质才起作用的.他认为物体的全部内聚力依靠构成这些物体的微粒的运动,运动的起因是以太微粒的碰撞,它是物体的全部特性的终极原因.莱布尼茨的抽象原理来源于他对连续体的研究和对运动定律的看法,他认为物质的微粒完全处于静止状态时,对一个运动着的物质不存在阻力,只有当微粒构成部分的内在运动时,物体才具有阻力或内聚力.他认为,运动着的物体,不论多么微小,它将带着处于完全静止状态的物体的部分一起运动. 他的物理学研究计划是:根据一个审慎的计划和规模,进行某些实验,借以在其上建立一个稳定的和论证的物理学堡垒.他的最终的奋斗目标是为物理学建立一个类似欧氏几何的公理系统. 莱布尼茨在物理学上最重要的工作是对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型. 1686年,莱布尼茨在《教师学报》上发表了反对笛卡儿关于力的度量的文章“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”(Breuis demonstratio erroris memorabilis Cartesii et aliorum circa Legem naturae),提出了运动的量的问题,从而开始了与笛卡儿学派关于运动度量的长期争论,并发展成了力学中的两个派别. 莱布尼茨指出,如果只用动量(mv,m为物体质量,v为物体运动速度)度量运动,那么“力”(mv2)在自然界不断增加或减少时,就会导致动量(mv)不守恒,因此他认为动量(mv)不能做为运动的度量单位. 他把力分为“死力”和“活力”,“死力”是静止物体的“压力”或“拉力”,这种力是外来的,其度量是物体的质量和物体由静止状态到运动状态时具有的速度的乘积,即动量mv.“活力”(vis viva)是内在于物体的力,是物体的真运动. 在他看来,“活力”应该由物体的质量和该物体所能上升的高度来测量(mh),按照伽利略落体定律,莱布尼茨成功地计算出高度h与速度v的平方成正比,“活力”保持不变m1v21=m2v22.因此,1695年他正式称mv2为“活力”(vis viva),并以mv2作为运动的度量单位,动能的概念就这样被引入到物理学中来了.这是他在《教师学报》上发表的“动力学实例”(Specimen dynamium)中提出的,这篇论文是莱布尼茨力学的结晶,包含了他的大部分研究成果.莱布尼茨第一次认为“活力”mv2是物理学上的终极因,因而可以转化为各种各样的形式,同时还第一次认为mv2的守恒是一个普遍的物理原理,这样他就有充分的理由证明“永动机是不可能”这样的观点.究竟应该以mv2,还是以mv,作为运动的量度,经过长达半个世纪的争论,直到1743年J.R.达朗贝尔(d’Alembert)指出两者都是正确的,不过各自所着眼的角度不同罢了,争论才平息. 莱布尼茨反对牛顿的绝对时空观,与牛顿的学生S.克拉克(Clarke)进行了长时期的辩论.在莱布尼茨看来,时空与运动、物质是密不可分的,认为“没有物质也就没有空间,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样.可是这些东西虽有区别,却是不可分离的”.这些思想后来引起了A.爱因斯坦(Einstein)等人的关注. 在材料力学方面,莱布尼茨支持马里奥特关于梁受力性质的思想.1684年,他在“固体受力的新分析证明”(Demonstratonsnovae de Resistentia Solidorum)一文中指出,纤维是可以延伸的,它们的拉力与伸长成正比.因此,他提出将胡克定律F=-kx应用于单根纤维,这一假说后来在材料力学中被称为马里奥特-莱布尼茨理论. 在光学方面,莱布尼茨利用微积分中的求极值方法,推导出了折射定律: 并尝试用求极值的方法解释光学基本定律. 地质学 1693年,莱布尼茨在《教师学报》上发表了一篇论述地球起源的文章,后来扩充为《原始地球》(Protogaea)一书.他认为,地球在早期是一个均匀的、灼热的熔融球体,形成之后开始逐渐冷却、收缩.当外表层冷却到一定程度后,一方面形成了原始的大气,另一方面形成一种玻璃质和熔洼质所组成的波质地壳,地壳由于收缩而形成褶皱.随着地球的进一步冷却,在这些褶皱的地壳上面,周围的水蒸汽便冷凝成汪洋大海,而由于水蒸汽融解了地壳表面的盐,因此海水就变咸了.引起这些地质大变化的原因,有些是地球内部的气体爆发使地壳破裂,有些是地球表面洪水泛滥所起的作用.前一种原因的作用结果形成火成岩,后一种原因的作用结果产生的是沉积岩层. 莱布尼茨进一步认为,在地壳不断变化,厚度增加的过程中,地表下形成了大量的气泡和空穴,当这些气泡和空穴由于重力等的作用而使其顶部发生坍陷时,地面上的水注入地下洞穴,从而使得原始海洋的水平面降低,因此就出现了山脉,地壳表面上也就有了大陆和海洋之分.同时,地壳表面由于海水的运动就形成了大规模的洪水,洪水对岩石造成了浸蚀,在冲刷、浸蚀的过程中,使得海水越来越咸,岩石碎片逐渐堆积,形成沉积岩.这种过程在地球的历史中多次进行,造成了各种沉积岩石和火成岩石交互出现的现象.在每一次大的运动之后,这些作用又达到新的平衡,从而又开始一个新的稳定时期.用这种观点,莱布尼茨成功地解释了岩石中含有动物遗迹以及含有年代不同的岩石碎块的沉积物这一现象. 对于石煤、合硫物质、石油等易燃物质,莱布尼茨认为火山爆发与地震是形成的原因.对于地层中的生物化石,有些甚至在今天的生物界中还没有找到与这些化石相应的生物,他认为,这些化石反映了生物的不断发展,这种现象的最终原因是自然界的变化而非偶然的神迹. 他的地球成因学说,尤其是他的宇宙进化和地球演化的思想启发了J.B.拉马克(Lamarck)、C.赖尔(Lyell)等人,促进了19世纪的地质学理论的新进展. 其他领域 莱布尼茨在化学、生物学、气象学、心理学等领域也做了重要的工作. 在化学方面,1677年,他写成《磷发现史》(Geschichte derErfindung der phosphois),对磷元素的性质和提取作了论述,促进了磷元素的发现.他还提出了分离化学制品和使水脱盐的技术. 在生物学方面,他从哲学角度提出了有机论方面的多种观点,认为存在介乎动物、植物之间的生物,水螅虫的发现证明了他的观点. 在气象学方面,他曾亲自组织人力进行过大气压和天气状况的观察. 1696年,莱布尼茨提出了心理学方面的身心平行论(para-llelism).他强调统觉(apperception)作用,与笛卡儿的交互作用论、B.D.斯宾诺莎(Spinoza)的一元论构成当时心理学三大理论.他还提出了下意识理论的初步思想. 1691年,他还曾致函D.帕潘(Papin),提出了蒸汽机的基本思想. 1700年前后,他最早提出了无液气压机原理,其中完全省掉了液柱. 莱布尼茨一生中,总是希望在学术和政治活动的各个领域都出人头地,他呕心沥血地工作和学习,善于吸收别人的思想,无论何时,只要他抓住一个新课题,就查阅所能找到的与此有关的一切材料,从不囿于传统的观念,而是希望产生与他具有的天才相当的创造性作品.为此,他对于要发表的作品总是不厌其烦地反复推敲. 他善于用访问和通信的方式与人们讨论问题,阐发自己的观点,一生中曾与千余人有过书信交往,留下了一万五千多封信件.与他通信的有各种各样的人士,既有牛顿、沃利斯、伯努利家族、A.阿尔诺(Arnauld)、N.De马勒伯朗士(Melebranche)等科学界、哲学界的知名学者,也有欧洲各国的王侯皇妃,距离远至远东的中国.信件的内容广泛,涉及历史学、哲学、语言学、数学、逻辑学、化学、生物学、物理学、工程技术等等.这些信件记载着他的思想、见解和各种研究成果,有的信件其实就是学术论文.他的许多著作生前未发表,大量的手稿和书信现在还存放在汉诺威图书馆中.有许多学者陆陆续续编纂出版过莱布尼茨著作集.第一次世界大战前,柏林科学院曾计划编莱布尼茨全集四十卷,这一工作至今仍未能完成.法国科学院则准备在20世纪末编辑出版莱布尼茨全集. 莱布尼茨一生涉猎了各个不同的学术领域,都留下了深深的印记,并且对后世产生了不同程度的影响.他处于文艺复兴时期的整体主义和活力论的世界观与18,19世纪的新原子论和机械论唯物主义的交接时期,他的观点,对他那个时代来说是激进的,超前的,许多重要思想以后才为人们所接受和重新发现,他的有些工作和观点无疑还包含着至今尚未认识到的潜力.正如他自己所说的那样:“我有非常多的思想,假如别人比我更深入透彻地研究这些思想,并把他们心灵的美好创造同我的劳动结合起来,那么,这些思想总有一天会有某些用处的.” 作为哲学家,他在哲学史上与亚里士多德齐名,他的学说与其弟子C.沃尔夫(Wolf)的理论结合,所形成的莱布尼茨-沃尔夫体系极大地影响了德国哲学的发展,尤其是影响了I.康德(Kant)的哲学思想.他开创了德国的自然哲学,以后经过沃尔夫、康德、J.W.V.哥德(Goethe),到G.W.F.黑格尔(Hegel)得到了长足的进展.莱布尼茨集科学研究与哲学研究于一身,科学思想与哲学思想相互联系和相互促进.例如他的单子论与其数学研究中的微分概念是相通的,他的单子概念和有机论自然观现在仍然受到人们的重视.他与英国哲学家J.洛克(Locke)在认识论方面的创造性的辨论以及他的名著《人类理解新论》(Nouveaux Essais Sur L Entendement Humain)丰富了哲学认识论,同时也加深了欧洲哲学两大派——经验主义与理性主义的对峙,而莱布尼茨则被认为是理性主义的重要代表人物之一.V.L.费尔巴哈(Feuerbach)曾经说:“近代哲学领域内继笛卡儿和斯宾诺莎之后,内容最为丰富的哲学乃是莱布尼茨.”他的逻辑学思想直接推动了20世纪B.罗素(Russell)等人对数理逻辑的研究和发展. 作为一位数学家,莱布尼茨对欧洲大陆数学的发展有着直接的重要的影响,突出地表现在欧洲大陆数学家宁愿采用他的d符号(微分符号)而成为“d主义”者,并与英国数学家的“点主义”展开了长达一个多世纪的抗争,使英国数学由于长期拒绝运用先进的符号和思想而落后于欧洲大陆的数学.直到19世纪英国的C.巴贝吉(Babbage)等青年数学家为改变这种状况而成立了一个数学分析学会,为反对“点主义”拥护“d主义”而奋斗,终于采用了莱布尼茨的微分符号. 莱布尼茨建立科学院的思想,直接促进了世界上几个著名科学院的建立;他的关于所有学科进行综合研究的观点,英明地预见了科学发展的趋势.在他的一生中,关心过各种各样的科学文化和社会政治问题,鼓吹和平与团结的济世胸怀贯穿始终,一刻也不懈怠地致力于旨在推动社会进步的学术、文化活动. 可以说,当今在各个学术领域都或多或少地看到他的影响.不过,许多情况是这样:只有在他的思想重新被发现以后,人们才开始注意到他在这些方面的“优先权”. 莱布尼茨一生没有结婚,一生没有在大学当教授.他平时从不进教堂,因此人们送给他一个绰号:Lovenix,即什么也不信的人.他去世时教士以此为借口,不予理睬,而宫庭也不过问,无人前来吊唁.弥留之际,陪伴他的只有所信任的大夫和他的秘书J.G.V.艾克哈特(Eckhark).艾克哈特发出讣告后,巴黎科学院秘书B.L.B.封登纳尔(Fontenelle)在科学院例会时向这位外国会员致了悼词.1793年左右,在汉诺威为他建立了纪念碑;1883年,莱比锡的一个教堂附近竖起了他的一座立式个人雕像.1983年,汉诺威照原样重修了被毁于第二次世界大战中的“莱布尼茨故居”,以供后人瞻仰 |